| Server IP : 54.233.248.239 / Your IP : 172.28.1.13 Web Server : Apache System : Linux ip-172-28-29-189 6.5.0-1014-aws #14~22.04.1-Ubuntu SMP Thu Feb 15 15:27:06 UTC 2024 x86_64 User : www-data ( 33) PHP Version : 7.2.34-43+ubuntu22.04.1+deb.sury.org+1 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals, MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : OFF | Sudo : ON | Pkexec : ON Directory : /lib/modules/6.5.0-1014-aws/build/include/linux/ |
Upload File : |
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef IOCONTEXT_H
#define IOCONTEXT_H
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
#include <linux/workqueue.h>
enum {
ICQ_EXITED = 1 << 2,
ICQ_DESTROYED = 1 << 3,
};
/*
* An io_cq (icq) is association between an io_context (ioc) and a
* request_queue (q). This is used by elevators which need to track
* information per ioc - q pair.
*
* Elevator can request use of icq by setting elevator_type->icq_size and
* ->icq_align. Both size and align must be larger than that of struct
* io_cq and elevator can use the tail area for private information. The
* recommended way to do this is defining a struct which contains io_cq as
* the first member followed by private members and using its size and
* align. For example,
*
* struct snail_io_cq {
* struct io_cq icq;
* int poke_snail;
* int feed_snail;
* };
*
* struct elevator_type snail_elv_type {
* .ops = { ... },
* .icq_size = sizeof(struct snail_io_cq),
* .icq_align = __alignof__(struct snail_io_cq),
* ...
* };
*
* If icq_size is set, block core will manage icq's. All requests will
* have its ->elv.icq field set before elevator_ops->elevator_set_req_fn()
* is called and be holding a reference to the associated io_context.
*
* Whenever a new icq is created, elevator_ops->elevator_init_icq_fn() is
* called and, on destruction, ->elevator_exit_icq_fn(). Both functions
* are called with both the associated io_context and queue locks held.
*
* Elevator is allowed to lookup icq using ioc_lookup_icq() while holding
* queue lock but the returned icq is valid only until the queue lock is
* released. Elevators can not and should not try to create or destroy
* icq's.
*
* As icq's are linked from both ioc and q, the locking rules are a bit
* complex.
*
* - ioc lock nests inside q lock.
*
* - ioc->icq_list and icq->ioc_node are protected by ioc lock.
* q->icq_list and icq->q_node by q lock.
*
* - ioc->icq_tree and ioc->icq_hint are protected by ioc lock, while icq
* itself is protected by q lock. However, both the indexes and icq
* itself are also RCU managed and lookup can be performed holding only
* the q lock.
*
* - icq's are not reference counted. They are destroyed when either the
* ioc or q goes away. Each request with icq set holds an extra
* reference to ioc to ensure it stays until the request is completed.
*
* - Linking and unlinking icq's are performed while holding both ioc and q
* locks. Due to the lock ordering, q exit is simple but ioc exit
* requires reverse-order double lock dance.
*/
struct io_cq {
struct request_queue *q;
struct io_context *ioc;
/*
* q_node and ioc_node link io_cq through icq_list of q and ioc
* respectively. Both fields are unused once ioc_exit_icq() is
* called and shared with __rcu_icq_cache and __rcu_head which are
* used for RCU free of io_cq.
*/
union {
struct list_head q_node;
struct kmem_cache *__rcu_icq_cache;
};
union {
struct hlist_node ioc_node;
struct rcu_head __rcu_head;
};
unsigned int flags;
};
/*
* I/O subsystem state of the associated processes. It is refcounted
* and kmalloc'ed. These could be shared between processes.
*/
struct io_context {
atomic_long_t refcount;
atomic_t active_ref;
unsigned short ioprio;
#ifdef CONFIG_BLK_ICQ
/* all the fields below are protected by this lock */
spinlock_t lock;
struct radix_tree_root icq_tree;
struct io_cq __rcu *icq_hint;
struct hlist_head icq_list;
struct work_struct release_work;
#endif /* CONFIG_BLK_ICQ */
};
struct task_struct;
#ifdef CONFIG_BLOCK
void put_io_context(struct io_context *ioc);
void exit_io_context(struct task_struct *task);
int __copy_io(unsigned long clone_flags, struct task_struct *tsk);
static inline int copy_io(unsigned long clone_flags, struct task_struct *tsk)
{
if (!current->io_context)
return 0;
return __copy_io(clone_flags, tsk);
}
#else
struct io_context;
static inline void put_io_context(struct io_context *ioc) { }
static inline void exit_io_context(struct task_struct *task) { }
static inline int copy_io(unsigned long clone_flags, struct task_struct *tsk)
{
return 0;
}
#endif /* CONFIG_BLOCK */
#endif /* IOCONTEXT_H */